Abstract
Methyl jasmonate (MeJA), a plant growth regulator, coordinates a diverse array of physiological responses, including the inhibition of seed germination, modulation of secondary metabolite biosynthesis, and activation of defence responses. The external application of MeJA has been demonstrated to effectively diminish the severity of fungal diseases. Here, we unveil a novel mechanism through which exogenous MeJA alleviates Fusarium head blight (FHB) by inhibiting the synthesis of deoxynivalenol (DON) in Fusarium graminearum, rather than by enhancing the wheat resistance response. MeJA treatment reduced the infection by wild-type F. graminearum in wheat coleoptiles, but exhibited no significant influence on that of the DON-deficient mutant strain (∆Tri5). The production of DON in F. graminearum was significantly inhibited both in vitro and in planta. MeJA affected the expression of genes related to DON biosynthesis, without influencing the formation of toxisomes as observed under microscopic analysis. Exogenous MeJA demonstrated a limited impact on the early genes of plant jasmonic acid signalling pathway, in contrast to the wild-type pathogen strain, which induced the upregulation of these genes. The expression levels of defence marker genes induced by MeJA were notably lower compared to those induced by the pathogen. This study elucidates the molecular mechanisms of MeJA in modulating the wheat-F. graminearum interaction, providing new insights into the development of environmentally friendly strategies against fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.