Abstract
Parkinson disease (PD) is the most common movement disorder, characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra. While the cause of this disease is largely unknown, a rare autosomal dominant familial form of PD is caused by a genetic mutation in the leucine-rich repeat kinase 2 (LRRK2) gene that presumably leads to a gain-of-function of LRRK2 kinase activity. Here, we explored the potential of over expression of this human gene in a new transgenic rat model to serve as an animal model for PD. Commercially available BAC transgenic rats expressing human LRRK2 with the familial PD mutation, R1441G, and their wild-type siblings were tested for deficits in motor function, sensorimotor gating, and higher cognitive function reminiscent of PD through the ages of 3, 6, 9 and 12 months. At 12 months of age, rats were exposed to intraperitoneal injections of the environmental toxin Paraquat or saline. Our results indicate that LRRK2R1441G transgenic rats do not show signs of neurodegeneration and do not develop significant motor or cognitive deficits until the age of 16 months. In addition, LRRK2R1441G transgenic rats did not show increased vulnerability to sub-toxic doses of Paraquat. Gene expression studies indicate that despite genomic presence and initial expression of the transgene, its expression was greatly reduced in our aged rats. We conclude that the transgenic LRRK2R1441G rat is not a valid model for studying the pathology of PD and discuss this in relation to other transgenic rat models.
Highlights
Parkinson disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) causing cardinal motor symptoms including resting tremor, rigidity, bradykinesia, and abnormal gait
All rats significantly increased their weight over time (ANOVA F(2,75) = 378,90, p < 0.001, GreenhouseGeisser correction), there was no significant difference in weight between transgenic LRRK2R1441G rats and their wild-type littermates (ANOVA F(2,75) = 0.63, p = 0.52, Greenhouse-Geisser correction; data not shown)
Motor tests In order to assess movement initiation abilities, vibrissae-evoked forelimb placing responses were measured in transgenic LRRK2R1441G rats and their wild-type littermates at
Summary
Parkinson disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) causing cardinal motor symptoms including resting tremor, rigidity, bradykinesia, and abnormal gait. The R1441G mutation on LRRK2 decreases GTPase activity and might thereby increase kinase activity, the physiological function of LRRK2 and the regulation of its enzymatic activity is not fully understood (Healy et al, 2008; Tsika & Moore, 2013). It is the second most common mutation causing PD, with a progression that is indistinguishable from sporadic PD, suggesting similar underlying mechanisms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.