Abstract
Our theoretical calculations suggest that the synergistic effect between the electron acceptor (B) and donor (Cl) in carbon nanotubes (CNTs) (BClCNTs) is the key to excellent oxygen reduction reaction (ORR) activity. However, the rational fabrication of BClCNTs is still an open question. Here, we first present a metal-free and controlled strategy for successful preparation of BClCNTs via chemically tailoring two-dimensional (2D) boron carbide (B4C) with Cl2. Accompanied by partial extraction of B atoms from B4C with Cl2, the residue B and C atoms combining with Cl atoms self-organize into nanotube microstructures. Significantly, the amount of heteroatoms (B and Cl) can be tuned in terms of altering chlorine-to-carbide molar ratios. As expected, as a metal-free ORR catalyst, the produced BClCNTs exhibit a higher onset potential (0.94 V vs a reversible hydrogen electrode; RHE) and half-wave potential (0.84 V) as well as greater stability than those of commercial Pt/C (0.92 and 0.80 V).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have