Abstract
Under a nonideal situation, the image quality may vary. As a result, the traditional iris recognition systems would not work well. However, these kinds of iris recognition systems have been widely deployed in law enforcement and homeland security. It will be desirable to transform the traditional systems to perform in nonideal situations without a costly update. In this paper, we propose a method that upgrades the traditional iris recognition system to work on nonideal situations. The proposed method takes into consideration not only the effect of image quality but also the segmentation accuracy. It employs video-based image-processing techniques to quickly identify and eliminate the bad quality images from iris videos for further processing. The proposed method is tested on public databases using in-house recognition algorithms and also evaluated using a commercialized system. The research results show that the proposed methods can be used to improve the performance of iris recognition systems in a nonideal situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.