Abstract

The performance of an iris recognition system depends greatly on how well the iris segmentation part of the system performs its task. The performance of an iris segmentation algorithm can be evaluated using different criteria and methods. Some of the methods evaluate the performance of the segmentation algorithm based on the performance of the whole iris recognition system. Other methods evaluate the performance of an iris segmentation subsystem independent of the performance of the system's other subsystems. To our knowledge there do not exist a generally accepted method or criteria for the evaluation of the standalone iris segmentation subsystem. This paper proposes a novel methodology to compare the performance of different iris segmentation algorithms, applied to different image datasets in a consistent way. The methodology employs the F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> score and an empirical cumulative distribution function. The implementation of the F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> score estimation, adapted to the iris segmentation task is described. Finally the application of the proposed methodology is demonstrated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.