Abstract
An empirical study explored the extent to which people can map locations in auditory space to locations on a visual display for four different transformations (or mappings) between auditory and visual surfaces. Participants were trained in each of four transformations: horizontal square, horizontal arc, vertical square, and vertical spherical surface. On each experimental trial, a sound was played through headphones connected to a spatialized sound system that uses a non-individualized head-related transfer function. The participant's task was to determine, using one transformation at a time, which of two objects on a visual display corresponded to the location of the sound. Though the two vertical transformations provided a more direct stimulus-response compatibility with the visual display, the two horizontal transformations made better use of the human auditory system's ability to localize sound, and resulted in better performance. Eye movements were analyzed, and it was found that the horizontal arc transformation provided the best auditory cue for moving the eyes to the correct visual target location with a single saccade.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have