Abstract

Mesenchymal-epithelial tissue interactions are critical for lung branching morphogenesis, and polypeptide growth factors are likely involved in these tissue interactions. Transforming growth factorbetas (TGFbetas) have been implicated in lung development, but their involvement in early lung branching morphogenesis is unclear. In the present study, we investigated the role of the three mammalian TGFbeta subtypes (beta1, beta2, and beta3) and their receptors (type III (TbetaR-III), type II (TbetaR-II), and two types I (TbetaR-I), ALK-1 and ALK-5) in early rat lung organogenesis by using an embryonic rat lung explant culture. Transcripts and proteins for all three TGFbetas and their receptors were detected during the embryonic period of fetal rat lung development. Inhibition of TGFbeta2, but not beta1 and beta3, with antisense oligonucleotides and neutralizing antibodies resulted in significant inhibition of early lung branching in culture. Addition of minute amounts (</=1 ng/ml) of exogenous TGFbeta2, but not beta1 and beta3, restored the branching of TGFbeta2 antisense-treated explants. Higher concentrations of TGFbeta2 were inhibitory. BrdU labeling of lung explants was not altered by antisense TGFbeta2 treatment, but low concentrations of TGFbeta2 increased thymidine uptake by isolated epithelial cells. Fibronectin and metallogelatinase activities of embryonic lung cells were not affected by any TGFbeta isoform but TGFbeta2 specifically decreased mesenchymal hyaluronan synthesis. Antisense inhibition of ALK-5 and TbetaR-II showed a similar reduction in early lung branching as observed with antisense TGFbeta2. Incubation of lung explants with soluble TbetaR-II receptors also abrogated lung branching. ALK-1 antisense treatment did not affect early branching. Administration of neither activin A, which can act via ALK-1, nor follistatin, the natural inhibitor of activin, to the explants cultures had any significant effect on lung branching. Antisense inhibition of the activin receptor-II (Act-RII) also did not affect lung branching. These results are consistent with TGFbeta2, but not beta1 and beta3, regulating pattern formation during early rat lung organogenesis. This TGFbeta signaling in rat lung branching in vitro appears to be predominantly mediated via the TbetaR-I(ALK-5)/TbetaR-II heteromeric complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call