Abstract

In order to understand the mechanisms that bring about maintenance and restoration of the integrity of corneal epithelium, we investigated independent and combined effects of transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) on rabbit corneal epithelial cells in cell and organ culture. Specifically, we determined whether incubation with these factors influenced 1) cellular proliferation, 2) ability of cells to attach to a fibronectin matrix, and 3) the rate of epithelial migration over corneal stroma. Incubation with TGF-beta caused a dose-related decrease in the incorporation of 3H-thymidine by the epithelial cells. EGF increased 3H-thymidine incorporation, but this effect was antagonized by the addition of TGF-beta into the incubation medium. Incubation with EGF increased the numbers of cells that attached to a fibronectin matrix. TGF-beta itself did not affect the number of attached cells but, again, it antagonized the stimulatory effect of EGF. Similarly, when corneal blocks were cultured with EGF, epithelial migration increased in a dose-related manner. TGF-beta itself did not affect epithelial migration at any of the concentrations tested (0.1-10 ng/ml), but it antagonized EGF-stimulated epithelial migration. These findings suggest that the proliferation and the migration of corneal epithelial cells are regulated by different mechanisms, and that TGF-beta serves as a modulator of the effects of EGF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.