Abstract

Epidermal growth factor (EGF) and interleukin 6 (IL-6) stimulate corneal epithelial wound healing. When applied to the cornea, these cytokines act on various types of cells and therefore may induce corneal neovascularization. We investigated the effects of EGF and IL-6 on cell proliferation and cell migration in rabbit corneal epithelial cells and human umbilical vein endothelial cells (HUVECs). Corneal epithelial cells or HUVECs were cultured with EGF or IL-6 in the presence of 1% fetal bovine serum, and the number of cells were counted, or the radioactivity of [3H]thymidine-incorporated cells was measured. Monolayered cultured corneal epithelial cells or HUVECs were mechanically wounded, and then the cells were cultured with serum-free basal medium containing EGF or IL-6. After 12 or 24 h, the wounded area was measured. Corneal blocks were cultured with serum-free TC-199 medium containing EGF or IL-6 for 24 h, and then the length of the path of the corneal epithelium was measured. Estimated cell count and [3H]thymidine uptake showed that EGF stimulated cell proliferation in both corneal epithelial cells and HUVECs in a dose-dependent manner. In contrast, IL-6 did not affect cell proliferation in either cell type. Furthermore, EGF also stimulated cell migration by increasing the monolayer and organ-culture system in both cells in a dose-dependent fashion. However, IL-6 stimulated cell migration only in corneal epithelial cells and not in HUVECs. These results demonstrated that EGF stimulated cell proliferation and migration in both corneal epithelial cells and HUVECs. In contrast, IL-6 stimulated only corneal epithelial cell migration and did not affect cell proliferation in either cell type or cell migration in HUVECs. These results suggest that, when applied to the cornea, EGF might induce corneal neovascularization, and IL-6 probably would not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.