Abstract

Epithelial metaplasia (EpM) is an acquired tissue abnormality resulting from the transformation of epithelium into another tissue with a different structure and function. This adaptative process is associated with an increased frequency of (pre)cancerous lesions. We propose that EpM is involved in cancer development by altering the expression of adhesion molecules important for cell-mediated antitumor immunity. Langerhans cells (LCs) are intraepithelial dendritic cells that initiate immune responses against viral or tumor antigens on both skin and mucosal surfaces. In the present study, we showed by immunohistology that the density of CD1a(+) LCs is reduced in EpM of the uterine cervix compared with native squamous epithelium and that the low number of LCs observed in EpM correlates with the down-regulation of cell-surface E-cadherin. We also demonstrated that transforming growth factor-beta1 is not only overexpressed in metaplastic tissues but also reduces E-cadherin expression in keratinocytes in vitro by inducing the promoter activity of Slug and Snail transcription factors. Finally, we showed that in vitro-generated LCs adhere poorly to keratinocytes transfected with either Slug or Snail DNA. These data suggest that transforming growth factor-beta1 indirectly reduces antigen-presenting cell density in EpM by affecting E-cadherin expression, which might explain the increased susceptibility of abnormal tissue differentiation to the development of cancer by the establishment of local immunodeficiency responsible for EpM tumorigenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.