Abstract

SummaryCalreticulin, a multifunctional endoplasmic reticulum resident protein, is required for TGF-β-induced epithelial-to-mesenchymal transition (EMT) and subsequent cardiomyogenesis. Using embryoid bodies (EBs) derived from calreticulin-null and wild-type (WT) embryonic stem cells (ESCs), we show that expression of EMT and cardiac differentiation markers is induced during differentiation of WT EBs. This induction is inhibited in the absence of calreticulin and can be mimicked by inhibiting TGF-β signaling in WT cells. The presence of calreticulin in WT cells permits TGF-β-mediated signaling via AKT/GSK3β and promotes repression of E-cadherin by SNAIL2/SLUG. This is paralleled by induction of N-cadherin in a process known as the cadherin switch. We show that regulated Ca2+ signaling between calreticulin and calcineurin is critical for the unabated TGF-β signaling that is necessary for the exit from pluripotency and the cadherin switch during EMT. Calreticulin is thus a key mediator of TGF-β-induced commencement of cardiomyogenesis in mouse ESCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call