Abstract

Pancreatic duct cells are considered a potential source of β-cell regeneration, and transforming growth factor-β (TGF-β) has been suggested to perform an important role in these processes, but the underlying mechanism of the signal pathways, especially in humans, remains poorly understood. To evaluate the role of TGF-β1, pancreatic duct cells were isolated from three brain-dead organ donors. Pancreatic cell clusters harvested after islet isolation were dispersed to single cells and cultured in monolayers, then treated with TGF-β1. We analyzed the characteristics of the cultured cells, the TGF-β1 intracellular signaling pathway, the proliferation, and transdifferentiation rates of the duct cells. We also evaluated the genes and protein expression patterns after TGF-β1 treatment. After TGF-β1 treatment, typical morphologic changes representative of EMT were observed and Erk1/2, JNK, and AKT phosphorylation, Ras downstream effectors, were increased. β cell-specific transcription factors including PDX-1, Beta2/NeuroD, Ist-1, and NGN3 were markedly suppressed and the rate of transdifferentiation into β cells was also suppressed. Genomic and proteomic analyses suggested that TGF-β1 induces marked changes in a variety of structural genes and proteins associated with EMT. In conclusion, TGF-β1 induces EMT in cultured human pancreatic duct cells, but suppresses its proliferation and transdifferentiation into β cells. Our results are the first report of TGF-β1 effects for EMT and ductal cell transdifferentiation and proliferation at the protein level in human pancreatic duct cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.