Abstract
This paper introduces a novel method for image colorization that utilizes a color transformer and generative adversarial networks (GANs) to address the challenge of generating visually appealing colorized images. Conventional approaches often struggle with capturing long-range dependencies and producing realistic colorizations. The proposed method integrates a transformer architecture to capture global information and a GAN framework to improve visual quality. In this study, a color encoder that utilizes a random normal distribution to generate color features is applied. These features are then integrated with grayscale image features to enhance the overall representation of the images. Our method demonstrates superior performance compared with existing approaches by utilizing the capacity of the transformer, which can capture long-range dependencies and generate a realistic colorization of the GAN. Experimental results show that the proposed network significantly outperforms other state-of-the-art colorization techniques, highlighting its potential for image colorization. This research opens new possibilities for precise and visually compelling image colorization in domains such as digital restoration and historical image analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.