Abstract
This paper presents a deep automatic colorization approach which avoids any manual intervention. Recently Generative Adversarial Network (GANs) approaches have proven their effectiveness for image colorization tasks. Inspired by GANs methods, we propose a novel colorization model that produces more realistic quality results. The model employs an additional discriminator which works in the feature domain. Using a feature discriminator, our generator produces structural high-frequency features instead of noisy artifacts. To achieve the required level of details in the colorization process, we incorporate non-adversarial losses from recent image style transfer techniques. Besides, the generator architecture follows the general shape of U-Net, to transfer information more effectively between distant layers. The performance of the proposed model was evaluated quantitatively as well as qualitatively with places365 dataset. Results show that the proposed model achieves more realistic colors with less artifacts compared to the state-of-the-art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.