Abstract

The cancer-associated fibroblast (CAF) barrier in pancreatic ductal adenocarcinoma (PDAC) greatly restricts clinical outcomes. Major obstacles to PDAC treatment include restricted immune cell infiltration and drug penetration and the immunosuppressive microenvironment. Here, we reported a "shooting fish in a barrel" strategy by preparing a lipid-polymer hybrid drug delivery system (PI/JGC/L-A) that could overcome the CAF barrier by turning it into a "barrel" with antitumor drug depot properties to alleviate the immunosuppressive microenvironment and increase immune cell infiltration. PI/JGC/L-A is composed of a pIL-12-loaded polymeric core (PI) and a JQ1 and gemcitabine elaidate coloaded liposomal shell (JGC/L-A) that has the ability to stimulate exosome secretion. By normalizing the CAF barrier to create a CAF "barrel" with JQ1, stimulating the secretion of gemcitabine-loaded exosomes from the CAF "barrel" to the deep tumor site, and leveraging the CAF "barrel" to secrete IL-12, PI/JGC/L-A realized effective drug delivery to the deep tumor site, activated antitumor immunity at the tumor site, and produced significant antitumor effects. In summary, our strategy of transforming the CAF barrier into antitumor drug depots represents a promising strategy against PDAC and might benefit the treatment of any tumors facing a drug delivery barrier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call