Abstract

Engineering fast-moving microrobot swarms that can physically disassemble bacterial biofilms and kill the bacteria released from the biofilms is a promising way to combat bacterial biofilm infections. Here, we report electrochemical design of Ag7O8NO3 microtorpedoes with outstanding antibacterial performance and meanwhile capable of moving at speeds of hundreds of body lengths per second in clinically used H2O2 aqueous solutions. These fast-moving antibacterial Ag7O8NO3 microtorpedoes could penetrate into and disintegrate the bacterial biofilms and, in turn, kill the bacteria released from the biofilms. Based on the understanding of the growth behavior of the microtorpedoes, we could fine-tune the morphology of the microtorpedoes to accelerate the moving speed and increase their penetration depth into the biofilms simply via controlling the potential waveforms. We further developed an automatic shaking method to selectively peel off the uniformly structured microtorpedoes from the electrode surface, realizing continuous electrochemical production of the microtorpedoes. Animal experiments proved that the microtorpedo swarms greatly increased the survival rate of the mice infected by lethal biofilms to >90%. We used the electrochemical method to design and massively produce uniformly structured fast-moving antibacterial microtorpedo swarms with application potentials in treatment of lethal bacterial biofilm infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.