Abstract
An experimental study of dielectric permittivity and dissipation factor of transformer oil-based magnetic nanofluid is reported in this paper. The investigated nanofluid consists of a commercial transformer oil and iron oxide nanoparticles (0.93 % solid volume fraction) coated with oleic acid as a stabilizing agent. Both, the transformer oil and the nanofluid were subjected to measurements of dielectric permittivity and dissipation factor under 1 kV at a power frequency of 50 Hz in the temperature range from 303 to 373 K. The compared results show that the magnetic nanofluid exhibits approximately 4 orders of magnitude greater dielectric losses than the transformer oil. This raised a question about the suitability of such a nanofluid for cooling applications in a transformer. Therefore, the cooling effectiveness of the nanofluid was tested in a model single-phase power transformer under 4.3 kVA load. The prototype transformer was designed with the aim to monitor its temperature at various locations during the load test. It was found that the cooling with the lossy nanofluid does not result in the deterioration of the thermal conditions of the transformer as compared to the cooling with the transformer oil. On the contrary, the tested nanofluid provides a slight decrease in the average transformer temperature rise. Possible reasons accounting for the slight enhancement in the transformer cooling are discussed. The increased thermal conductivity and development of thermomagnetic convection are considered as primary reasons of the cooling effect.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have