Abstract
Creating consistency among project schedule data, BIM, and payment applications requires activities in a construction schedule to be mapped with the most relevant ASTM Uniformat classifications. To do so, we introduce UniformatBridge, a new transformer-based natural language processing model, that automatically labels activities in a project schedule with Uniformat classification. Our model introduces construction sequencing tokens that capture logistically-constrained predecessor and successor activities into BERT architecture. We also introduce a dataset of real-world construction project schedules with their ground-truth Uniformat classifications for validation. Experimental results using this dataset achieve F1-scores of 0.93 and 0.87 when matching unstructured schedule data to Uniformat Level 2 and 3 classifications, respectively. We share how our method unlocks development of new techniques to (1) automatically create 4D BIM, and (2) computer-vision progress monitoring to tie semantic segmentation of reality capture data based on Uniformat classes against schedule or payment application data structures, with/without BIM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.