Abstract

AbstractHydrogels, which are hydrophilic soft porous networks, are an important class of materials of broad relevance to bioanalytical chemistry, soft‐robotics, drug delivery, and regenerative medicine. Transformer hydrogels are micro‐ and mesostructured hydrogels that display a dramatic transformation of shape, form, or dimension with associated changes in function, due to engineered local variations such as in swelling or stiffness, in response to external controls or environmental stimuli. This review describes principles that can be utilized to fabricate transformer hydrogels such as by layering, patterning, or generating anisotropy, and gradients. Transformer hydrogels are classified based on their responsivity to different stimuli such as temperature, electromagnetic fields, chemicals, and biomolecules. A survey of the current research progress suggests applications of transformer hydrogels in biomimetics, soft robotics, microfluidics, tissue engineering, drug delivery, surgery, and biomedical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.