Abstract
A map of the environment is the basis for the robot's navigation. Multi-robot collaborative autonomous exploration allows for rapidly constructing maps of unknown environments, essential for application areas such as search and rescue missions. Traditional autonomous exploration methods are inefficient due to the repetitive exploration problem. For this reason, we propose a multi-robot autonomous exploration method based on the Transformer model. Our multi-agent deep reinforcement learning method includes a multi-agent learning method to effectively improve exploration efficiency. We conducted experiments comparing our proposed method with existing methods in a simulation environment, and the experimental results showed that our proposed method had a good performance and a specific generalization ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.