Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants with a widespread presence in diverse environmental contexts. Transformation processes of PAHs via degradation and biotransformation have parallels in humans, animals, plants, fungi, and bacteria. Mapping the transformation products of PAHs is therefore crucial for assessing their toxicological impact and developing effective monitoring strategies. The present research aimed to explore the PAH detoxification products formed by the marine fish Atlantic haddock (Melanogrammus aeglefinus) after single PAH treatments. Using target and suspect screening analyses on an ion mobility quadrupole time-of-flight mass spectrometer (IM-QTOF MS), deprotonated compounds were identified and archived into a metabolite mass spectral library, which is systematized and presented in this work. The results offer an exclusive overview of the transformation products and their associated mass spectral features. Transformation products include hydroxy compounds, dihydrodiols, polycyclic aromatic acids, glucuronides, sulfates, glutathiones, cysteinylglycines, cysteines, and mercapturic acids. By documenting high-resolution mass spectrometry data, this comprehensive characterization provides a valuable reference point for the development of broad-spectrum analytical methods. It also addresses a critical gap in the field by presenting tentative identifications of PAH transformation products in the absence of analytical standards. Moreover, it encourages further investigation of these compounds as they have important toxicological relevance in both ecotoxicology and human research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have