Abstract

Reactive Ti-5Al-5 V-5Cr-3Mo (Ti5553) alloy feedstock powder is used in laser powder-bed fusion (LPBF). Due to the large quantity of powder necessary for LPBF, powder is reused numerous times under oxidizing environments. Transformations to the powder’s native surface oxide may impact the LPBF process and lead to deviations from expected behavior of printed parts.Here, we present a multimodal characterization of new and reused powder by combining X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and transmission electron microscopy (TEM) of focused ion beam (FIB)-prepared cross sections of individual powder particles to understand how the surface oxide composition changes, grows, and becomes hydroxylated and hydrated due to reuse. We show that the native oxide film of Ti5553 powder is a hydroxylated mixed oxide composed of TiO2 and Al2O3 that grows from 5.6 +/- 0.7 nm to 8.3 +/- 1.1 nm due to reuse. Al oxide regions of the surface oxide become more hydroxylated during reuse in comparison to Ti oxide regions. This indicates that an outer oxide of pure TiO2 may enhance recyclability of Ti5553 powder while the presence of Al oxides may decrease recyclability. Further characterization of surface transformations due to recyclability may eliminate unnecessary variation in LPBF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call