Abstract

ABSTRACTThe effect of thermal annealing on the optical properties of Al2O3 films with different Si content was investigated by the photoluminescence method. Si-rich Al2O3 films were prepared by RF magnetron co-sputtering of the silicon and alumina targets on long quarts glass substrates. Photoluminescence (PL) spectra of freshly prepared Si-rich Al2O3 films are characterized by three PL bands with the peak positions at 2.97-3.00, 2.25-2.29 and 1.50 eV. The thermal annealing of the films at 1150 °C during 30 min stimulates the formation of Si nanocrystals (NCs) in the film area with Si content exceeded 60%. After the thermal annealing the PL intensity of all mentioned PL bands decreases and the new PL band appears with the peak position at 1.67 eV. The new PL band is attributed to the photo currier recombination inside of Si NCs. The size of NCs estimated from the PL peak position 1.67 eV of Si NC emission is about ∼-4.5-5.0 nm.The temperature dependences of PL spectra of Si-rich Al2O3 films have been studied in the range of 10-300K with the aim to reveal the mechanism of recombination transitions for mentioned above PL bands 2.97-3.00, 2.25-2.29 and 1.50 eV in freshly prepared films. The thermal activation of PL intensity and permanent PL peak positions in the temperature range 10-300K permit to assign these PL bands to defect related emission in Al2O3 matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.