Abstract

Interambularcral plates of echinoid Heterocentrotus trigonarius, composed of Mg calcite 1 (≈14 mol% MgCO 3), were heated in three timed series of experiments at 300°C. Dried plate fragments and fragments with added water were heated separately in pressurized bombs. X-ray powder diffractometry, unit cell dimensions, and phase compositions are used to monitor reaction progress. After 10 h heating in the bombs dolomite (43.5 mol% MgCO 3) and Mg calcite appear (4–7 mol% MgCO 3); by 20 h all Mg calcite 1 is consumed, and at 120 h dolomite composition has evolved to ≈47 mol% MgCO 3 and calcite to ≈2 mol% MgCO 3. Whole plates heated at 300°C in an open muffle furnace develop dolomite (≈42 mol% MgCO 3) and Mg calcite 2 (≈6 mol% MgCO 3) after 10 h and remain compositionally invariant throughout subsequent heating to 620 h. Limited skeletal water catalyzes the early reaction but escapes from the open furnace and consequently reaction ceases after ≈10 h. The experimentally produced dolomite has relative Mg-Ca ordering of 75% to 79%. The stabilization of echinoid Mg calcite by heating at 300°C to a mixture of dolomite and calcite occurs through a dissolution/precipitation reaction. The alteration fabric produced within the stereom consists of irregularly shaped, branched dolomite crystals > 5 μm homoaxially set in a calcite 2 (bomb) or Mg calcite 2 (furnace) matrix. Round and tubular pores 1 to 5 μm are randomly distributed throughout this fabric. The stereom pore system remains intact during furnace heating but is destroyed during heating in bombs. The texture of experimentally stabilized echinoid skeletons is different from that of fossil echinoderms that are composed of microrhomic dolomite homoaxially set in a single calcite crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.