Abstract

Many organisms possess the remarkable ability to deposit single crystals of calcite (CaCCO3) with morphologies not normally observed in the inorganic world [1]. Whilst it is true that single geological crystals of calcite can exhibit an enormous range of different habits, all these forms have common interfacial angles and symmetry as described by the R3c space group. By contrast, the external forms of some biological single crystals of calcite have symmetries that are non-crystallographic. The coccolith segments deposited by the unicellular marine alga Emiliania huxleyi illustrate this phenomenon particularly well:- Current theories of biomineralization suggest that calcifying organisms have adopted strategies for controlling morphology based on the deployment of functional organic molecules. For example, proteins rich in aspartate and glutamate residues and also phosphoserine, are common for molluscs [3] whilst coccoliths of E. huxleyi are deposited along with sulphated and carboxylated polysaccharides [4]. Thus, carboxylate groups and, to a lesser extent, sulphates and phosphates play an important role in the biomineralization of calcite. Open image in new window Fig. 1. Single crystal segment of E. huxleyi [2] (left) compared to a similarly oriented geological calcite crystal (right)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.