Abstract

Abstract A service temperature increase of turbine exhaust casing liners of heavy-duty industrial gas turbines, driven by the need to raise thermal efficiencies, motivated a number of ageing trials. Casing liners are often made of metastable austenitic stainless steels, suitable for high temperature applications. Alloys such as 321SS and 347SS might contain, in the as-cast condition, rather large amounts of delta ferrite, if not further processed by rolling or forging, easily in excess of 15 %. Even rolled sheet and bar might contain significant volume fractions of that phase if welded, up to 15 % or so in the heat affected zone (HAZ) immediately adjacent to the fusion line, and in the weld metal. It is known from the literature and from field experience that delta ferrite might decompose into sigma phase after long-term service exposure at elevated temperatures. This may embrittle the material and can be detrimental to mechanical properties. It could also deleteriously affect creep strength. The main aim of ageing trials described in this paper was to study the phase stability of delta ferrite under simulated service conditions. The results are correlated to metallographic testing results, obtained from examining actual service components of heavy-duty gas turbine engines in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call