Abstract
Silicon carbide (SiC) thin films were deposited on Si(111) by the hot wire chemical vapour deposition (HWCVD) technique using silane (SiH4) and methane (CH4) gases without hydrogen dilution. The effects of SiH4 to CH4 gas flow ratio (R) on the structural properties, chemical composition and photoluminescence (PL) properties of the films deposited at the different gas flow ratios were investigated and compared. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra revealed a structural transition from amorphous SiC to cubic nano-crystalline SiC films with the increase in the gas flow ratio. Raman scattering confirmed the multi-phased nature of the films. Auger electron spectroscopy showed that the carbon incorporation in the film structure was strongly dependent on the gas flow ratio. A similar broad visible room-temperature PL with two peaks was observed for all SiC films. The main PL emission was correlated to the band to band transition in uniform a-SiC phase and the other lower energy emission was related to the confined a-Si : H clusters in a-SiC matrix. SiC nano-crystallites exhibit no significant contribution to the radiative recombination
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have