Abstract

Digital systems storing cadastral data in vector format are considered effective due to their ability of offering interactive services to citizens and other land-related systems. The adoption of such systems is ubiquitous, but when adopted, they create two non-compatible systems with paper-based cadastral systems whose information needs to be digitised. This study proposes a new approach that is fast and accurate for transforming paper-based cadastral data into digital systems. The proposed method involves deep-learning techniques of the LCNN and ResNet-50 for detecting cadastral parcels and their numbers, respectively, from the cadastral plans. It also contains four functions defined to speed up transformations and compilations of the cadastral plan’s data in digital systems. The LCNN is trained and validated with 968 samples. The ResNet-50 is trained and validated with 106,000 samples. The Structural-Average-Precision () achieved with the LCNN was 0.9057. The Precision, Recall and F1-Score achieved with the ResNet-50 were 0.9650, 0.9648 and 0.9649, respectively. These results confirmed that the new method is accurate enough for implementation, and we tested it with a huge set of data from Tanzania. Its performance from the experimented data shows that the proposed method could effectively transform paper-based cadastral data into digital systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.