Abstract

In this work, we present ultrashort pulse generation from passively mode-locked Cr:ZnS laser with a monolayer graphene-coated ZnSe substrate exhibiting high nonlinearity. The femtosecond Cr:ZnS laser produces output power up to 330 mW at a 233 MHz repetition rate. Even in the presence of an uneven negative dispersion profile, the enhanced self-phase modulation by the ZnSe substrate of the graphene saturable absorber enables the polycrystalline Cr:ZnS laser to produce slightly chirped 99 fs pulses at 2373 nm. With extracavity dispersion compensation using a mixture of 3 mm and 2 mm thick ZnSe plates, the pulse width was compressed from 99 fs to 73 fs, resulting in an improved time–bandwidth product from 0.431 to 0.318. Assuming a sech2 pulse shape (0.315), the pulses were almost transform-limited. These results indicate that utilizing a graphene saturable absorber on a substrate with high nonlinearity presents an effective method for developing sub-100 fs solid-state lasers within the mid-IR spectral range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.