Abstract

We show here an adaptation of the classical Flash Method permitting the measure of the thermal conductivity of semi-transparent porous materials. A flash lamp send a heat pulse on the upper face of a cylindrical sample and lower face temperature is analysed. The semi-transparent material is sandwiched between two copper slices. The sample used scatters thermal radiation, and absorbs it very little. It is therefore possible to account for two parts of heat transfer through the material: a pure conductive phenomenon and a radiative one. In most insulating materials radiative transfer represents about 1/3 of the total heat flux at the ambiant temperature. The problem is solved with electrical analogy, quadripoles technique and Laplace transform. The modelization brings out two physical character parameters of the material and a coefficient qualifying the thermal exchange between the sample and the environment during the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.