Abstract

The drug discovery process relies on characterizing structure-activity relationships, since specific ligand-target interactions often result in important biological functions. Measuring diffusion coefficients by nuclear magnetic resonance spectroscopy is a useful way to study binding, because changes can be detected when a small ligand interacts with a macromolecular target. Diffusion coefficients can be miscalculated, however, due to magnetization transfer between the receptor and ligand. This transferred nuclear Overhauser effect (trNOE) disrupts the observed signal decay due to diffusion as a function of the experimental diffusion time. Since longer diffusion times also selectively edit free ligand signal, the measured diffusion coefficients become biased toward the fraction of bound ligand. Despite this discrepancy, under these experimental conditions, the trNOE selectively influences the measured signals of binding ligands and can be used to gain insight into ligand-protein interactions. These phenomena have been studied for caffeine and L-tryptophan, which bind to human serum albumin, and the antimalarial agent trimethoprim, which interacts with dihydrofolate reductase. The results provide insight into the nature of ligand-protein binding and are thus useful for elucidating the molecular features of the ligand that interact with the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.