Abstract

Camera-based fluorescence correlation spectroscopy (FCS) approaches allow the measurement of thousands of contiguous points yielding excellent statistics and details of sample structure. Imaging total internal reflection FCS (ITIR-FCS) provides these measurements on lipid membranes. Herein, we determine the influence of the point spread function (PSF) of the optical system, the laser power used, and the time resolution of the camera on the accuracy of diffusion coefficient and concentration measurements. We demonstrate that the PSF can be accurately determined by ITIR-FCS and that the laser power and time resolution can be varied over a wide range with limited influence on the measurement of the diffusion coefficient whereas the concentration measurements are sensitive to changes in the measurement parameters. One advantage of ITIR-FCS is that the measurement of the PSF has to be performed only once for a given optical setup, in contrast to confocal FCS in which calibrations have to be performed at least once per measurement day. Using optimized experimental conditions we provide diffusion coefficients for over ten different lipid membranes consisting of one, two and three constituents, measured in over 200,000 individual correlation functions. Using software binning and thus the inherent advantage of ITIR-FCS of providing multiple observation areas in a single measurement we test the FCS diffusion law and show how they can be complemented by the local information provided by the difference in cross-correlation functions (ΔCCF). With the determination of the PSF by ITIR-FCS and the optimization of measurement conditions ITIR-FCS becomes a calibration-free method. This allows us to provide measurements of absolute diffusion coefficients for bilayers with different compositions, which were stable over many different bilayer preparations over a time of at least one year, using a single PSF calibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.