Abstract

With the recent availability of state-of-the-art radioactive ion beams, there has been a renew interest in the investigation of nuclear reactions with heavy ions near the Coulomb barrier. The role of inelastic and transfer channel couplings in fusion reactions induced by stable heavy ions can be revisited. Detailed analysis of recent experimental fusion cross sections by using standard coupled-channel calculations is first discussed. Multi-neutron transfer effects are introduced in the fusion process below the Coulomb barrier by analyzing 32S+90,96Zr as benchmark reactions. The enhancement of fusion cross sections for 32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations including the coupling of the neutrontransfer channels following the Zagrebaev semi-classical model. Similar effects for 40Ca+90Zr and 40Ca+96Zr fusion excitation functions are found. The breakup coupling in both the elastic scattering and in the fusion process induced by weakly bound stable projectiles is also shown to be crucial. In the second part of this work, full coupled-channel calculations of the fusion excitation functions are performed by using the breakup coupling for the more neutron-rich reaction and for the more weakly bound projectiles. We clearly demonstrate that Continuum-Discretized Coupled-Channel calculations are capable to reproduce the fusion enhancement from the breakup coupling in 6Li+59Co.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.