Abstract

Implicit solvent models are essential for molecular dynamics simulations of biomolecules, striking a balance between computational efficiency and biological realism. Efforts are underway to develop accurate and transferable implicit solvent models and coarse-grained (CG) force fields in general, guided by a bottom-up approach that matches the CG energy function with the potential of mean force (PMF) defined by the finer system. However, practical challenges arise due to the lack of analytical expressions for the PMF and algorithmic limitations in parameterizing CG force fields. To address these challenges, a machine learning-based approach is proposed, utilizing graph neural networks (GNNs) to represent the solvation free energy and potential contrasting for parameter optimization. We demonstrate the effectiveness of the approach by deriving a transferable GNN implicit solvent model using 600,000 atomistic configurations of six proteins obtained from explicit solvent simulations. The GNN model provides solvation free energy estimations much more accurately than state-of-the-art implicit solvent models, reproducing configurational distributions of explicit solvent simulations. We also demonstrate the reasonable transferability of the GNN model outside of the training data. Our study offers valuable insights for deriving systematically improvable implicit solvent models and CG force fields from a bottom-up perspective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call