Abstract

To investigate whether implicit solvent models are appropriate for mechanistic studies of conformational transition in proteins, a recently developed generalized Born model (GBSW) was applied to a small signaling protein, chemotaxis protein Y (CheY), with different combinations of the phosphorylation state and conformation of the system; the results were compared to explicit solvent simulations using a stochastic boundary condition. The subtle but distinct conformational transitions involved in CheY activation makes the system ideally suited for comparing implicit and explicit solvent models because these conformational transitions are potentially accessible in both types of simulations. The structural and dynamical properties analyzed include not only those localized to the active site region but also throughout the protein, such as sidechain methyl group order parameters, backbone hydrogen bonding lifetime and occupancy as well as principal components of the trajectories. Overall, many properties were well reproduced by the GBSW simulations when compared with the explicit solvent calculations, although a number of observations consistently point to the suggestion that the current parameterization of the GBSW model tends to overestimate hydrogen-bonding interactions involving both charged groups and (charge-neutral) backbone atoms. This deficiency led to overstabilization of certain secondary structural motifs and more importantly, qualitatively different behaviors for the active site groups (Thr 87, Ala 88, the beta4-alpha4 loop) in response to phosphorylation, when compared with explicit solvent simulations. The current study highlights the value of carrying out both explicit and implicit solvent simulations for complementary mechanistic insights in the analysis of conformational transition in biomolecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call