Abstract

BackgroundDuring the last decade, numerous microsatellite markers were developed for genotyping and to identify closely related plant genotypes. In citrus, previously developed microsatellite markers were arisen from genomic libraries and more often located in non coding DNA sequences. To optimize the use of these EST-SSRs as genetic markers in genome mapping programs and citrus systematic analysis, we have investigated their polymorphism related to the type (di or trinucleotide) or their position in the coding sequences.ResultsAmong 11000 unigenes from a Clementine EST library, we have found at least one microsatellite sequence (repeated units size ranged from 2 to 6 nucleotides) in 1500 unigenes (13.6%). More than 95% of these SSRs were di or trinucleotides. If trinucleotide microsatellites were encountered trough all part of EST sequences, dinucleotide microsatellites were preferentially (50%) concentrated in the 5' 100th nucleotides. We assessed the polymorphism of 41 EST-SSR, by PCR amplification droved with flanking primers among ten Citrus species plus 3 from other genera. More than 90% of EST-SSR markers were polymorphic. Furthermore, dinucleotide microsatellite markers were more polymorphic than trinucleotide ones, probably related to their distribution that was more often located in the 5' UnTranslated Region (UTR). We obtained a good agreement of diversity relationships between the citrus species and relatives assessed with EST-SSR markers with the established taxonomy and phylogeny. To end, the heterozygosity of each genotype and all dual combinations were studied to evaluate the percentage of mappable markers. Higher values (> 45%) were observed for putative Citrus inter-specific hybrids (lime lemon, or sour orange) than for Citrus basic true species (mandarin, pummelo and citron) (<30%). Most favorable combinations for genome mapping were observed in those involving interspecific hybrid genotypes. Those gave higher levels of mappable markers (>70%) with a significant proportion suitable for synteny analysis.ConclusionFourty one new EST-SSR markers were produced and were available for citrus genetic studies. Whatever the position of the SSR in the ESTs the EST-SSR markers we developed are powerful to investigate genetic diversity and genome mapping in citrus.

Highlights

  • During the last decade, numerous microsatellite markers were developed for genotyping and to identify closely related plant genotypes

  • We report here the outline investigation of the polymorphism of EST-SSR among a set of 16 citrus species covering a wide range of citrus genetic diversity

  • The codon sequences were translated in nucleotide sequences and the SSR position related to the CDS was elucidate and detailed as following: in 5'UnTranslated Region (UTR), in CDS or in 3'UTR

Read more

Summary

Introduction

Numerous microsatellite markers were developed for genotyping and to identify closely related plant genotypes. To optimize the use of these EST-SSRs as genetic markers in genome mapping programs and citrus systematic analysis, we have investigated their polymorphism related to the type (di or trinucleotide) or their position in the coding sequences. To maximize the potential for the development of EST-SSR based maps we need to investigate the polymorphism and the heterozygosity of these markers in different combined genotypes at the origin of F1 progenies. Another point of reflexion concerning the polymorphism of SSRs in EST is the usefulness of the derived markers such as STMS (Sequence Tagged MicroSatellite) in cultivar distinctness and in relationships between varieties and species. The particular position of these SSRs inside coding sequences may question the genetic diversity information that we can extract from those markers related to the putative influence of the selection on the SSR polymorphism

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call