Abstract
To elucidate further the potential of a Semliki Forest virus (SFV) vector in vivo for gene therapy, we constructed a vector, SFV-IL12, to transfer murine IL-12 genes into tumors. A single intratumoral injection of established B16 murine melanoma with SFV-IL12 resulted in a significant inhibition of tumor growth, while injection with SFV-LacZ had no effect. This antitumoral activity correlated with an increase of IFN gamma production, MIG and IP-10 mRNA expression, both at the tumor site and at the periphery. In contrast, no increase in CTL- or NK cell-mediated cytotoxic response could be detected, ruling out the involvement of T and NK cell cytotoxicity. To determine how the transfer to IL-12 genes induced tumor regression, the antiangiogenic-activity of SFV-IL12 was investigated using Doppler ultrasonography (DUS). SFV-IL12 inhibited in situ neovascularization within the tumor, without affecting the resistance index of pre-existing intratumoral blood flows. In addition, histological analysis of SFV-IL12-treated tumors showed massive tumor necrosis induced by SFV-IL12 treatment. These data indicate that SFV-IL12 inhibits tumor growth through its antiangiogenic activity, demonstrated for the first time in vivo by DUS, and suggest that the SFV vector may be a novel valuable tool in tumor gene transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.