Abstract
The Semliki Forest virus (SFV) system has been shown to be highly efficient in transduction of cell lines and primary cells. We employed a novel "noncytotoxic" SFV(PD) vector for transduction of primary ventral midbrain floor cultures in vitro and rat substantia nigra in vivo. Rapid protein expression was noted with preferential transduction of neuronal cells including the dopaminergic subpopulation. To examine the suitability of the SFV vector system for functional gene expression, SFV(PD) vectors encoding for antiapoptotic proteins Bcl-X(L) and XIAP were designed. Despite effective transgene expression, SFV(PD) vectors were unable to rescue dopaminergic neurons from MPP+-induced apoptosis. In vivo, virus injection into substantia nigra resulted in fast onset of transgene expression, but elicited an activation of microglia and an inflammation response. We conclude that the use of novel SFV(PD) vectors is currently limited by persistent neurotoxicity of the vector system. Although SFV(PD) vectors may be useful for protein localization studies in dopaminergic neurons, functional applications will require the development of even less cytopathic vector systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.