Abstract

Homogeneously catalyzed hydrogenation reactions of unsaturated substrates with H 2 gas mixtures enriched in parahydrogen yield strong NMR signal enhancements of the transferred 1H nuclei if the symmetry of H2 is broken in the resulting hydrogenated products. This chemically induced hyperpolarization phenomenon known as parahydrogen-induced polarization (PHIP) is a well-established polarization technique in NMR spectroscopy. Ever since its theoretical prediction and subsequent experimental verification the method has been used to increase signal intensity in 1H-NMR spectroscopy for the elucidation of catalytic pathways of hydrogenation reactions and their kinetic behavior. Furthermore, PHIP is not confined to the attached protons and 1H nuclei which are close to the hydrogenation site but it can also be transferred spontaneously to heteronuclei, which are present in the hydrogenation product. In this review we give an overview of the different experiments that have been performed in recent years in order to efficiently transfer PHIP-derived polarization to insensitive magnetically active nuclei following the catalyzed parahydrogenation of their unsaturated precursor molecules. A detailed description of the experiments dealing with every individual heteronucleus in particular is followed by a discussion of the mechanisms leading to PHIP transfer. Subsequently, we describe the existing set of pulse sequences that have been designed and successfully employed in order to induce an exchange of increased magnetization originating from PHIP between protons and heteronuclei using conventional coherence transfer schemes. Finally, possible applications of non-proton PHIP spectroscopy in medicine and clinical research are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.