Abstract

Pairwise and random addition processes are ordinarily indistinguishable in hydrogenation reactions. The distinction becomes important only when the fate of spin correlation matters, such as in parahydrogen-induced polarization (PHIP). Supported metal catalysts were not expected to yield PHIP signals given the rapid diffusion of H atoms on the catalyst surface and in view of the sequential stepwise nature of the H atom addition in the Horiuti-Polanyi mechanism. Thus, it seems surprising that supported metal hydrogenation catalysts can yield detectable PHIP NMR signals. Even more remarkably, supported Pt and Ir nanoparticles are shown herein to catalyze pairwise replacement on propene and 3,3,3-trifluoropropene. By simply flowing a mixture of parahydrogen and alkene over the catalyst, the scalar symmetrization order of the former is incorporated into the latter without a change in molecular structure, producing intense PHIP NMR signals on the alkene. An important indicator of the mechanism of the pairwise replacement is its stereoselectivity, which is revealed with the aid of density matrix spectral simulations. PHIP by pairwise replacement has the potential to significantly diversify the substrates that can be hyperpolarized by PHIP for biomedical utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call