Abstract

The current experiment investigated generalizability of motor learning in proximal versus distal effectors in upper extremities. Twenty-eight participants were divided into three groups: training proximal effectors, training distal effectors, and no training control group (CG). Performance was tested pre- and post-training for specific learning and three learning transfer conditions: (1) bilateral learning transfer between homologous effectors, (2) lateral learning transfer between non-homologous effectors, and (3) bilateral learning transfer between non-homologous effectors. With respect to specific learning, both training groups showed significant, similar improvement for the trained proximal and distal effectors, respectively. In addition, there was significant learning transfer to all three transfer conditions, except for bilateral learning transfer between non-homologous effectors for the distal training group. Interestingly, the proximal training group showed significantly larger learning transfer to other effectors compared to the distal training group. The CG did not show significant improvements from pre- to post-test. These results show that learning is partly effector independent and generalizable to different effectors, even though transfer is suboptimal compared to specific learning. Furthermore, there is a proximal-distal gradient in generalizability, in that learning transfer from trained proximal effectors is larger than from trained distal effectors, which is consistent with neuroanatomical differences in activation of proximal and distal muscles.

Highlights

  • As the saying goes, practice makes perfect, and training a motor skill generally leads to improvements in performance

  • The post hoc follow-up of Learning Type showed that bilateral learning transfer between homologous effectors was less effective compared to specific learning (p < 0.0005), but significantly more effective compared to bilateral learning transfer to the non-homologous effectors (p = 0.001)

  • The results supported our hypothesis of a proximal-distal gradient in motor learning transfer, in that we found more pronounced learning transfer to non-trained effectors in upper extremities after training with proximal effectors versus training with distal effectors

Read more

Summary

Introduction

Practice makes perfect, and training a motor skill generally leads to improvements in performance. One of the oldest principles of motor learning is the specificity of practice hypothesis (Thorndike and Woodworth, 1901), proposing that training effects are highly task- and effector-specific (e.g., Sanes and Donoghue, 2000; Giboin et al, 2015; Spampinato et al, 2017). Training often has additional learning effects that were not trained. These additional learning effects are collectively labeled motor learning transfer (Adams, 1987). Researchers traditionally define transfer of learning as the influence of previous experiences on performing the same skill in a new context or on learning

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.