Abstract

ABSTRACT Purpose: Bilateral force deficit occurs when the maximal generated force during simultaneous bilateral muscle contractions is lower than the sum of forces generated unilaterally. Neural inhibition is stated as the main source for bilateral force deficit. Based on differences in bilateral neural organization, there might be a pronounced neural inhibition for proximal compared to distal effectors. The aim of the present experiment was to evaluate potential differences in bilateral force deficit in proximal compared to distal effectors in lower extremities. Methods: Fifteen young adults performed single-joint maximal voluntary contractions in isometric dorsiflexion of ankle (distal) and knee (proximal) extension unilaterally and bilaterally. Results: Results showed a significant absolute bilateral force deficit for both proximal (123.46 ± 59.51 N) and distal effectors (33.00 ± 35.60 N). Interestingly, the relative bilateral force deficit for knee extension was significantly larger compared to dorsiflexion of ankle, 19.98 ± 10.04% and 10.27 ± 9.57%, respectively. Our results indicate a significantly higher bilateral force deficit for proximal effectors compared to distal effectors. Conclusion: Plausible explanations are related to neuroanatomical and neurophysiological differences between proximal effectors and distal effectors where proximal muscles have a higher potential for bilateral communication compared to distal muscles. In addition, higher forces produced with proximal effectors could cause a higher perceived exertion and cause a more pronounced bilateral force deficit to proximal effectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.