Abstract
The complexity of industrial logistics and manufacturing processes increases constantly. As a key enabling technology of the upcoming decades, quantum computing is expected to play a crucial role in solving arising combinatorial optimization problems superior to traditional approaches. This study analyzes the current progress of quantum optimization applications in the logistics sector and aims to transfer an existing vehicle routing use case to a newly conceptualized matrix production use case regarding resource-efficient material flows. The simulation of the originating simple model is executed on a local circuit-based quantum simulator that emulates the behavior of real quantum hardware. Using a QAOA algorithm for problem-solving, optimal results have been achieved for all simulated scenarios. The theoretical material flow model is based on multiple assumptions and was created for testing reasons exclusively. For a realistic practical application, the model must therefore first be adapted and extended to include additional features.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have