Abstract
Bacterial transfer during postharvest handling of fresh produce provides a mechanism for spreading pathogens, but risk factors in dry environments are poorly understood. The aim of the study was to investigate factors influencing bacterial transfer between yellow onions (Allium cepa) and polyurethane (PU) or stainless steel (SS) under dry conditions. Rifampin-resistant Enterococcus faecium NRRL B-2354 or a five-strain cocktail of Salmonella was inoculated onto onion skin or PU surfaces at high or moderate levels using peptone, onion extract, or soil water as inoculum carriers. Transfer from inoculated to uninoculated surfaces was conducted using a texture analyzer to control force, time, and number of contacts. Transfer rates (ratio of recipient surface to donor surface populations) of E. faecium (4–5%) were significantly higher than those of Salmonella (0.5–0.6%) at the high (7 log CFU/cm2) but not moderate (5 log CFU/cm2) inoculum levels. Significantly higher populations of E. faecium transferred from onion to PU than from PU to onion. The transfer rates of E. faecium were impacted by inoculum carrier (61% [onion extract], 1.6% [peptone], and 0.31% [soil]) but not by inoculation level or recipient surface (PU versus SS). Bacterial transfer during dry onion handling is significantly dependent on bacterial species, inoculation levels, inoculum carrier, and transfer direction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have