Abstract

AbstractWe present a novel bonding process for gallium nitride-based electronic devices on diamond heat spreaders. In the proposed technology, GaN devices are transferred from silicon (Si) onto single (SCD) and polycrystalline diamond (PCD) substrates by van der Waals bonding. Load-pull measurements on Si and SCD heat spreaders at 3 GHz and 50 V drain bias show comparable power-added-efficiency and output power (Pout) levels. A thermal analysis of the hybrids was performed by comparison of 2 × 1mm2AlGaN/GaN Schottky diodes on Si, PCD, and SCD, which exhibit a homogeneous field in the channel in contrast to gated transistors. Significantly different currents are observed due to the temperature dependent mobility in the 2DEG channel. These measurements are supported by a 3D thermal finite element analysis, which suggests a large impact of our transfer technique on the thermal resistance of these devices. In summary, we show a promising new GaN-on-diamond technology for future high-power, microwave GaN device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.