Abstract
Accumulation of toxic metabolites has been described to inhibit mitochondrial enzymes, thereby inducing oxidative stress in propionic acidemia (PA), an autosomal recessive metabolic disorder caused by the deficiency of mitochondrial propionyl-CoA carboxylase. PA patients exhibit neurological deficits and multiorgan complications including cardiomyopathy. To investigate the role of mitochondrial dysfunction in the development of these alterations we have used a hypomorphic mouse model of PA that mimics the biochemical and clinical hallmarks of the disease. We have studied the tissue-specific bioenergetic signature by Reverse Phase Protein Microarrays and analysed OXPHOS complex activities, mtDNA copy number, oxidative damage, superoxide anion and hydrogen peroxide levels. The results show decreased levels and/or activity of several OXPHOS complexes in different tissues of PA mice. An increase in mitochondrial mass and OXPHOS complexes was observed in brain, possibly reflecting a compensatory mechanism including metabolic reprogramming. mtDNA depletion was present in most tissues analysed. Antioxidant enzymes were also found altered. Lipid peroxidation was present along with an increase in hydrogen peroxide and superoxide anion production. These data support the hypothesis that oxidative damage may contribute to the pathophysiology of PA, opening new avenues in the identification of therapeutic targets and paving the way for in vivo evaluation of compounds targeting mitochondrial biogenesis or reactive oxygen species production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.