Abstract

Cellulosic biomass has the potential to serve as a major renewable energy source. However, its strong recalcitrance to degradation hampers its large-scale use in biofuel production. To overcome this problem, a detailed understanding of the origins of the recalcitrance is required. One main biophysical phenomenon leading to the recalcitrance is the high structural ordering of natural cellulose fibrils, that arises largely from an extensive hydrogen-bond network between and within cellulose polymers. Here, we present a lattice-based model of cellulose I(α), one of the two major natural forms, at the resolution of explicit hydrogen bonds. The partition function and thermodynamic properties are evaluated using the transfer matrix method. Two competing hydrogen-bond patterns are found. This plasticity of the hydrogen-bond network leads to an entropic contribution stabilizing the crystalline fibril at intermediate temperatures. At these temperatures, an enhanced probability of bonding between the individual cellulose chains gives rise to increased resistance of the entire cellulose fibril to degradation, before the final disassembly temperature is reached. The results are consistent with the available crystallographic and IR spectroscopic experiments on the thermostability of cellulose I(α).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.