Abstract
Transfer matrices are used widely for the dynamic analysis of engineering structures, increasingly so for static analysis, and are particularly useful in the treatment of repetitive structures for which, in general, the behaviour of a complete structure can be determined through the analysis of a single repeating cell, together with boundary conditions if the structure is not of infinite extent. For elastostatic analyses, non-unity eigenvalues of the transfer matrix of a repeating cell are the rates of decay of self-equilibrated loading, as anticipated by Saint-Venant's principle. Multiple unity eigenvalues pertain to the transmission of load, e.g. tension, or bending moment, and equivalent (homogenized) continuum properties, such as cross-sectional area, second moment of area and Poisson's ratio, can be determined from the associated eigen- and principal vectors. Various disparate results, the majority new, others drawn from diverse sources, are presented. These include calculation of principal vectors using the Moore–Penrose inverse, bi- and symplectic orthogonality and relationship with the reciprocal theorem, restrictions on complex unity eigenvalues, effect of cell left-to-right symmetry on both the stiffness and transfer matrices, eigenvalue veering in the absence of translational symmetry and limitations on possible Jordan canonical forms. It is shown that only a repeating unity eigenvalue can lead to a non-trivial Jordan block form, so degenerate decay modes cannot exist. The present elastostatic analysis complements Langley's (Langley 1996 Proc. R. Soc. A 452 , 1631–1648) transfer matrix analysis of wave motion energetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.