Abstract

"Drivers" are theorized mechanisms for persistent atrial fibrillation. Machine learning algorithms have been used to identify drivers, but the small size of current driver datasets limits their performance. We hypothesized that pretraining with unsupervised learning on a large dataset of unlabeled electrograms would improve classifier accuracy on a smaller driver dataset. In this study, we used a SimCLR-based framework to pretrain a residual neural network on a dataset of 113K unlabeled 64-electrode measurements and found weighted testing accuracy to improve over a non-pretrained network (78.6±3.9% vs 71.9±3.3%). This lays ground for development of superior driver detection algorithms and supports use of transfer learning for other datasets of endocardial electrograms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call