Abstract
The Multi-Ion Toxicity (MIT) Model uses electrochemical theory to predict the transepithelial potential (TEP) across the gills as an index of major ion toxicity in freshwater animals. The goal is to determine environmental criteria that will be protective of aquatic organisms exposed to salt pollution. In recent studies, TEP disturbances above baseline (ΔTEP) during short-term exposures to major ions have been proven as indicative of their toxicity to fish, in accord with the MIT model. However, the acute 1-h exposures used in these previous studies might not be realistic relative to the 24h or 96h test periods used for toxicity assessment. To address this temporal inconsistency, the current study investigated both the TEP responses to serial concentrations of 10 major salts (NaCl, Na2SO4, NaHCO3, KCl, K2SO4, KHCO3, CaCl2, CaSO4, MgCl2, MgSO4) and plasma ion levels in juvenile rainbow trout after they had been pre-exposed to 50% of the 96h-LC50 levels of these same salts for 4 days. The pre-exposures caused no mortalities. In general, plasma ions (Na+, K+, Ca2+, Mg2+, Cl-) were well-regulated; however, pre-exposure to sulfate salts resulted in the greatest number of alterations in plasma ion levels. TEP responses remained largely similar to those of naïve trout (without salt pre-exposure). All salts caused hyperbolic concentration-dependent increases in TEP that were well-described by the Michaelis-Menten equation. In the pre-exposed trout, the variation of ∆TEP at the 96h-LC50 concentrations was only 2.2-fold, compared to nearly 28-fold variation among the molar concentrations of the various salts at the 96h-LC50s, identical to the conclusion for naïve trout. Overall, the results remove the temporal inconsistency of previous tests and remain supportive of the MIT model. In addition, the recorded alterations in certain plasma ions, baseline TEP, and Michaelis-Menten constants improve our knowledge on specific physiological responses after extended major ion exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.